Linear Size Distance Preservers

نویسنده

  • Gregory Bodwin
چکیده

The famous shortest path tree lemma states that, for any node s in a graph G = (V,E), there is a subgraph on O(n) edges that preserves all distances between node pairs in the set {s}×V . A very basic question in distance sketching research, with applications to other problems in the field, is to categorize when else graphs admit sparse subgraphs that preserve distances between a set P of p node pairs, where P has some different structure than {s}×V or possibly no guaranteed structure at all. Trivial lower bounds of a path or a clique show that such a subgraph will need Ω(n + p) edges in the worst case. The question is then to determine when these trivial lower bounds are sharp; that is, when do graphs have linear size distance preservers on O(n+ p) edges? In this paper, we make the first new progress on this fundamental question in over ten years. We show: 1. All G,P has a distance preserver onO(n) edges whenever p = O(n), even if G is directed and/or weighted. These are the first nontrivial preservers of size O(n) known for directed graphs. 2. All G,P has a distance preserver on O(p) edges whenever p = Ω (

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Euclidean and circum-Euclidean distance matrices: Characterizations and linear preservers

Short proofs are given to various characterizations of the (circum-)Euclidean squared distance matrices. Linear preserver problems related to these matrices are discussed.

متن کامل

Ela Euclidean and Circum-euclidean Distance Matrices: Characterizations and Linear Preservers

Short proofs are given to various characterizations of the (circum-)Euclidean squared distance matrices. Linear preserver problems related to these matrices are discussed.

متن کامل

On multiplicative (strong) linear preservers of majorizations

‎In this paper, we study some kinds of majorizations on $textbf{M}_{n}$ and their linear or strong linear preservers. Also, we find the structure of linear or strong linear preservers which are multiplicative, i.e.  linear or strong linear preservers like $Phi $ with the property $Phi (AB)=Phi (A)Phi (B)$ for every $A,Bin textbf{M}_{n}$.

متن کامل

Linear Preservers of Majorization

For vectors $X, Yin mathbb{R}^{n}$, we say $X$ is left matrix majorized by $Y$ and write $X prec_{ell} Y$ if for some row stochastic matrix $R, ~X=RY.$ Also, we write $Xsim_{ell}Y,$ when $Xprec_{ell}Yprec_{ell}X.$ A linear operator $Tcolon mathbb{R}^{p}to mathbb{R}^{n}$ is said to be a linear preserver of a given relation $prec$ if $Xprec Y$ on $mathbb{R}^{p}$ implies that $TXprec TY$ on $mathb...

متن کامل

SGLT-MAJORIZATION ON Mn,m AND ITS LINEAR PRESERVERS

A matrix R is said to be g-row substochastic if Re ≤ e. For X, Y ∈ Mn,m, it is said that X is sglt-majorized by Y , X ≺sglt Y , if there exists an n-by-n lower triangular g-row substochastic matrix R such that X = RY . This paper characterizes all (strong) linear preservers and strong linear preservers of ≺sglt on Rn and Mn,m, respectively.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017